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Abstract 
Optical Burst Switching (OBS) is an important concept in next-

generation optical networks, which trades off the granularity 

constraints of Optical Circuit Switching and Optical Packet 

Switching. BS The burst assembly mechanism determines the 

performance of OBS critically, combining client packets into 

transmission bursts. The current paper includes a critical review and 

quantitative analysis of three basic assembly methods: Time-Based, 

Length-Based, and Hybrid Adaptive. We show, by mathematical 

modeling, algorithm development, and simulation findings, that 

both of the two approaches to threshold exhibited limitations 

inherent in all of them: Time-Based assembly is delay-bound but 

inefficient in burst sizes, and Length-Based assembly is efficient but 

has the unlimited delay-bound. A hybrid Adaptive scheme 

addresses these shortcomings by adapting the parameters of the 

assembly on the fly, depending on the conditions of the network. 

Intelligent adaptive schemes in simulation actually lead to the 

reduction of Burst Loss Probability by 40-60 percent in comparison 

to the methods that are not smart, and the delays remain below 8 ms. 

Moreover, we compile the data performance of previous research 
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papers and research how adaptive methods are changing towards the 

methods based on machine learning. In conclusion, it is found that 

adaptive assembly is a necessity to make a practical OBS 

deployment, and future research efforts should be directed at 

lightweight machine learning models and compatibility with new 

network architectures. 

Keywords: Optical Burst Switching (OBS), Burst Assembly, Time-

Based Assembly, Length-Based Assembly, Hybrid Adaptive 

Assembly, Quality of Service (QoS), Machine Learning in 

Networking, Performance Analysis. 

مقارنة مرجعية لتقنيات تجميع الدفعات في شبكات التبديل البصري 
 الاندفاعي: النماذج المعتمدة على الزمن، والحجم، والهجينة المتكيّفة

 مان احمد الكيلانيعث
 ليبيا –المعهد العالي للعلوم والتقنية تامزاوة  -قسم تقنية المعلومات 

 طارق احمد الكيلاني
 ليبيا –لمعهد العالي للعلوم والتقنية سوكنة ا -قسم علوم الحاسوب 

 
 ملخص

مفهوماً مهماً في شبكات الجيل القادم البصرية،  (OBS) يُعد التبديل البصري الاندفاعي
حيث يحقق مقايضة بين قيود دقة التبديل البصري الدائري والتبديل البصري بالرزم. وتُحدد 

بشكل حاسم، من خلال دمج رزم المستخدم في  OBS آلية تجميع الدفعات أداء شبكات
دفعات إرسال. تتضمن الورقة الحالية مراجعة نقدية وتحليلًا كمياً لثلاث طرق تجميع 

لزمن، والمعتمدة على الحجم، والهجينة المتكيفة. نوضح، من أساسية: المعتمدة على ا
خلال النمذجة الرياضية وتطوير الخوارزميات والنتائج المحاكية، أن كلًا من نهجي العتبة 
الأساسيين يُظهران قيوداً جوهرية: فالتجميع المعتمد على الزمن يحترم حدود التأخير ولكنه 

نما التجميع المعتمد على الحجم فعال ولكنه غير غير فعال من حيث أحجام الدفعات، بي
مقيد بحدود تأخير. ويعالج المخطط الهجين المتكيف هذه العيوب من خلال تكييف 
معلمات التجميع ديناميكياً، اعتماداً على ظروف الشبكة. تؤدي المخططات التكيفية الذكية 

http://www.doi.org/10.62341/ytta2186
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مقارنة بالطرق  ٪04-04في المحاكاة فعلياً إلى خفض احتمالية فقدان الدفعات بنسبة 
مللي ثانية. علاوة على ذلك، نجمع بيانات  8غير الذكية، مع بقاء التأخيرات أقل من 

الأداء من الأبحاث السابقة ونتقصى كيف تتجه الأساليب التكيفية نحو الأساليب القائمة 
ملي ععلى التعلم الآلي. نستنتج في الختام أن التجميع التكيفي يُعد ضرورة لتحقيق نشر 

، ويجب توجيه الجهود البحثية المستقبلية نحو نماذج تعلم آلي خفيفة الوزن OBS لشبكات
 .وتوافقها مع بنى الشبكات الجديدة

، تجميع الدفعات، التجميع (OBS) التبديل البصري الاندفاعي : الكلمات المفتاحية
 متكيف، جودةالمعتمد على الزمن، التجميع المعتمد على الحجم، التجميع الهجين ال

 .، التعلم الآلي في الشبكات، تحليل الأداء(QoS) الخدمة

I. Introduction 

The concurrent increases in Internet traffic several folds over due to 

bandwidth-intensive applications like ultra-high-definition video 

streaming, cloud computing service providers, and massive IoT 

deployments, have stretched traditional electronic core network 

capacity. Although the requirements of Dense Wavelength Division 

Multiplexing (DWDM) ensure that optical fibers have plenty of 

bandwidth, the continued existence of the so-called electronic 

bottleneck at switching nodes still calls out novel all-optical 

switching models [1]. There has arisen an interesting tradeoff 

between the coarse-grained resource allocation of Optical Circuit 

Switching (OCS) in one side and the fine-grained but more difficult 

to achieve Optical Packet Switching (OPS) in the other, in the form 

of Optical Burst Switching (OBS) [2]. 

In the OBS architecture, the transmission of data is in the form of 

aggregated units referred to as bursts. Multiple client-level packets 

are contained within each burst and all of them are to the same 

egress node. An important aspect of OBS is a one-way reservation 

scheme, which is usually provided by protocols such as Just-

Enough-Time (JET) [3]. In JET, the control packet is sent before the 

burst of data in another control wavelength and optical switches are 

set on the path. The data burst is followed without waiting to be 

acknowledged after a calculated delay. This design reduces setup 

latency, at the cost of introducing the problem of burst contention - 

http://www.doi.org/10.62341/ytta2186
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where several bursts would be competing with each other to use the 

same output resources at the same time. 

The burst assembly process which is performed at ingress edge 

nodes is the basic traffic shaping tool in OBS. It has a direct impact 

on core network performance in that burst arrival statistics, size 

distributions, and inter-arrival times are determined [4]. A 

suboptimal assembly algorithm may result in overly large control 

overhead (excessive small bursts), or overly large packet loss 

(excessively large bursts) and hence impair overall throughput and 

quality of service (QoS). In turn, the key aspect is to structure a 

powerful burst assembly policy. 

Three canonical assembly methods with different operational 

philosophies and performance characteristics have been mainly 

researched by the research community: 

1.  Time-Based Assembly: Aggregates packets for a fixed duration. 

2.  Length-Based Assembly: Aggregates packets until a fixed size 

threshold is reached. 

3.  Hybrid Adaptive Assembly: Dynamically adjusts assembly 

parameters based on real-time network feedback. 

This paper provides a comprehensive review, mathematical 

analysis, and quantitative comparison of these three techniques. We 

extend beyond qualitative descriptions by presenting original 

simulation results, synthesizing quantitative findings from the 

literature, and tracing the evolution of adaptive schemes toward 

modern machine-learning-based approaches. The remainder of this 

paper is organized as follows: Section II provides necessary 

background on OBS. Sections III, IV, and V detail the operational 

principles, mathematical models, and algorithms for Time-Based, 

Length-Based, and Hybrid Adaptive assembly, respectively. 

Section VI presents a comparative analysis including our simulation 

results and a review of prior quantitative studies. Section VII 

concludes the paper and outlines future research directions. 

 II. Background on Optical Burst Switching 

Fig. 1 shows OBS network architecture used to define functional 

roles between edge and core nodes. Edge nodes have an electronic 

processing such as burst assembly (on ingress), and disassembly (on 

egress). Core nodes are purely optical in nature and they switch on 

the instructions in the control packets only. The basic JET 

reservation system works in the following way. In the case of a data 

http://www.doi.org/10.62341/ytta2186
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burst of length T, the source edge node transmits a control packet 

that carries the routing information and length of the burst. 

 
Fig 1. OBS Network Architecture [1]. 

This control packet is electronically handled at every core node in-

between to set up the optical cross-connect. The burst of data is sent 

with an offset time 𝑇𝑜𝑓𝑓𝑠𝑒𝑡 which is computed in such a way that the 

path is set up just in time before the burst reaches the receiver. This 

offseting time should compensate the sum of the delay of control 

packet procedures 𝑇𝑝𝑟𝑜𝑐  along the path: 

𝑇offset =∑  

𝐻

ℎ=1

𝑇𝑝𝑟𝑜𝑐
ℎ  

Where H is the number of hops. This disconnected control and data 

plane functionality allows the network to effectively use the optical 

bandwidth but results in the network being prone to burst 

contention. The burst collision, which can happen when two or more 

bursts need the same output wavelength at the same time, causes 

burst loss unless it is avoided by a method such as burst routing, 

wavelength conversion, or burst segmentation [5]. 

http://www.doi.org/10.62341/ytta2186
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The process of the burst assembly is, consequently, not a convenient 

addition but a key factor of performance, which is crucial. It 

modulates the load provided to the core transforming a series of 

small-grained packets into larger-grained bursts. The statistical 

characteristics of this burstified traffic mean burst size (b size) 

controlled by the probability distribution of a burst size) 𝔼[𝐵size ], 
burst arrival rate 𝝀𝒃𝒖𝒓𝒔𝒕 controlled by the probability distribution of 

a burst arrival rate, 𝝀 are directly related to the probability of 

contention and, therefore, the performance of the network (in terms 

of throughput and loss) as a whole [6]. 

 III. Time-Based Burst Assembly 

 A. Operational Principle and Algorithm 

The Time-Based algorithm is based on the principle of timer which 

gives preference to delay bounds as opposed to the consistency of 

burst size. There are individual assembly lines (one per destination) 

or one per class of service. After the arrival of the first packet to an 

empty queue, a timer is set to have a fixed threshold 𝑇𝑚𝑎𝑥. Any 

further packets that are directed to the same endpoint are combined 

and added to the queue. Once the timer is up, all the packets in the 

queue are added together into a burst and sent out on the spot, 

irrespective of the amount of packet collected in the process. The 

cycle is then repeated by resetting the timer. Algorithms 1 formalize 

the process and are represented in a flowchart of Fig. 2. 

 
Fig. 2. Time-Based (JET) Burst Process [1] 

http://www.doi.org/10.62341/ytta2186
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Algorithm 1: Time-Based Burst Assembly 

Input: Incoming Packets, Time Threshold T_max 

Output: Data Bursts 

1: Initialize an empty assembly queue Q for each destination/CoS. 

2: For each incoming packet p: 

3:     Identify destination D and Class of Service (CoS). 

4:     Enqueue p into the corresponding queue Q_D,CoS. 

5:     If queue Q_D,CoS was empty before enqueueing p: 

6:         Start a timer for duration T_max for Q_D,CoS. 

8: On Timer Expiry for a queue Q: 

9:     Form a data burst B from all packets in Q. 

10:     Schedule transmission of B (send control packet, then data 

burst after offset). 

11:     Clear the queue Q. 

12:     Cancel the timer for Q. 

B. Mathematical Analysis and Performance Characteristics 

The main benefit of Time-Based assembly is that the assembly delay 

is determined by a deterministic bound. 𝐷 𝑚𝑎𝑥
𝑇𝐵 : The largest delay D 

max TB any packet will have is exactly 𝑇𝑚𝑎𝑥: 

𝐷 𝑚𝑎𝑥
𝑇𝐵  =  𝑇𝑚𝑎𝑥  

This feature renders it applicable to delay sensitive application like 

VoIP and interactive gaming [7]. The variable burst size is however, 

a major disadvantage. Let 𝑁(𝒯) represent the quantity of packets 

arriving during a time frame  𝒯  ,and 𝑆𝑖 represents the size of the 𝒾-

th packet. A burst collected above 𝑇𝑚𝑎𝑥  measure is: 

𝐵size 
𝑇𝐵 = ∑  

𝑁(𝑇𝑚𝑎𝑥)

𝑖=1

𝑆𝑖 

When the arrival process is Poisson with rate 𝜆 of the packets per 

second , and when the average packet size 𝑆 . then the expected burst 

size is: 

(1)             𝔼  [𝐵size 
𝑇𝐵 ] = 𝜆𝑆̅𝑇𝑚𝑎𝑥 

The fundamental inefficiency, as seen in equation (1), is that when 

the load is light (that is, when the value of the parameter 𝜆 is small) 

http://www.doi.org/10.62341/ytta2186
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the anticipated burst size decreases with the consequence that the 

fixed control overhead C (control packet processing, offset time) is 

amortized with a small payload size. An efficiency measure 𝜂𝑇𝐵 that 

can be defined is the ratio of payload to the total resources used: 

(2)       𝜂𝑇𝐵 ≈
𝔼[𝐵size 

𝑇𝐵 ]

𝔼[𝐵size 
𝑇𝐵 ]+𝐶

 

As 𝜆 → 0, 𝔼[𝐵𝑠𝑖𝑧𝑒
𝑇𝐵 ] → 0, and thus 𝜂𝑇𝐵 → 0. Conversely, under 

heavy load, bursts can become excessively large, increasing the risk 

of contention and causing significant data loss if a single burst is 

dropped. 

 IV. Length-Based Burst Assembly 

 A. Operational Principle and Algorithm 

However, in high-load situations, bursts may grow too large and the 

chances of contention and making large data loss when one burst is 

lost grows. Length-Based assembly is data-volume-driven (as 

opposed to time-driven), but unlike bounded delay, it is based on 

consistent burst sizes. A fixed size limit 𝐿𝑚𝑎𝑥  is characterized. The 

packets are stored in a queue until the total size of data in the queue 

satisfies or surpasses 𝐿𝑚𝑎𝑥 . At this moment there is formed a burst 

and sent. The primary trigger does not involve any timer. This is 

described in algorithm 2 and shown in Fig. 3.  

Algorithm 2: Length-Based Burst Assembly 

Input: Incoming Packets, Length Threshold L_max 

Output: Data Bursts 

1: Initialize an empty assembly queue Q for each destination/CoS. 

2: For each incoming packet p: 

3:     Identify destination D and Class of Service (CoS). 

4:     Enqueue p into the corresponding queue Q_D,CoS. 

5:     current_length = total size of all packets in Q_D,CoS. 

6:     If current_length >= L_max: 

7:         Form a data burst B from packets in Q_D,CoS (up to 

L_max). 

8:         Schedule transmission of B. 

9:         Remove transmitted packets from Q_D,CoS. 

10:        // Note: Residual packets below L_max remain in queue 

for next burst. 

http://www.doi.org/10.62341/ytta2186
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Fig 3. Length-Based Burst Assembly Flowchart[5]. 

 

B. Mathematical Analysis and Performance Characteristics 

The major strength of the method is the consistent burst size which 

makes core network resource management easier and resolves 

contention [8]. The size of the burst 𝐵𝑠𝑖𝑧𝑒
𝐿𝐵  is of the order of 𝐿𝑚𝑎𝑥 , 

and has slight deviations because of the boundaries of packets. The 

great drawback is the unpredictable and possibly unlimited 

assembly delay. A(t) = The cumulative size of the data (in bytes) 

which has been received in the assembly queue up to time t. The 

burst assembly time τ is a random variable that is defined as: 

(3)         𝜏 = 𝑖𝑛𝑓{𝑡 > 0: 𝐴(𝑡) ≥ 𝐿𝑚𝑎𝑥
} 

http://www.doi.org/10.62341/ytta2186
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Assuming that the packets arrive after a Poisson process with the 

rate λ and average packet size is and equal to 𝑆 ̅then A(t) is a 

compound Poisson process. The anticipated assembly time delay of 

𝔼[𝜏𝐿𝐵] is: 

(4)     𝔼[𝜏𝐿𝐵] =
𝐿𝑚𝑎𝑥

𝜆𝑆̅
 

The basic trade-off, as pointed out by equation (4), is that the 

assembly delay is directly proportional to traffic load. At times when 

the traffic is small (small 𝜆𝑆̅), the delay of the scheme 𝔼[𝜏𝐿𝐵] can 

be large so that this scheme is not suitable to use in real time. The 

regular burst size to achieve however, guarantees high bandwidth 

usage since the overhead of control is always shared across a large 

fixed payload. 

V. Hybrid Adaptive Burst Assembly 

 A. Motivation and Conceptual Framework 

The shortcomings of the static-threshold techniques, namely being 

inefficient at variable load when used as Time-Based and high-delay 

when used as Length-Based made progress toward Hybrid Adaptive 

techniques. These plans seek to utilize the advantages of the two 

methods and reduce the drawbacks. The essence is to ensure that the 

assembly parameters   𝑇𝑚𝑎𝑥 𝐿𝑚𝑎𝑥, or both, are dynamic and adapt to 

the real-time network conditions, the network traffic properties, or 

QoS demands [9]. There are usually two strategies used by adaptive 

mechanisms: reactive feedback of the core network (e.g., congestion 

notifications, loss reports) or proactive prediction using local traffic 

measurements at the edge node. The objective function tends to be 

multi-dimensional and it aims at minimizing Burst Loss Probability 

(BLP) with a constraint on both the average packet delay and tail 

packet delay. 

B. Methodologies and Algorithmic Variants 

1. Basic Hybrid Timer/Length with Heuristic Adaptation: 

This underlying adaptive strategy establishes a maximum time 

  𝑇𝑚𝑎𝑥  and a maximum length   𝐿𝑚𝑎𝑥  A burst is sent when either 

condition is met first. Simple heuristics are used to adjust the 

thresholds in order to introduce adaptation. Indicatively, in case the 

measured traffic load ( 𝜌 ) (use of the assembly queue output link) 

is always large,   𝑇𝑚𝑎𝑥  can be reduced in order to minimize burst 

sizes and contention and vice versa. This can be formalized as a 

proportional control law on the time threshold: 

http://www.doi.org/10.62341/ytta2186
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(5)   𝑇𝑚𝑎𝑥
(𝑘+1) = 𝑇𝑚𝑎𝑥

(𝑘) + 𝛼(𝜌𝑡𝑎𝑟𝑔𝑒𝑡 − 𝜌
(𝑘)) 

In which 𝑇𝑚𝑎𝑥
(𝑘)  is the threshold within the 𝑘 − 𝑡ℎ adaptation interval, 

(𝜌𝑡𝑎𝑟𝑔𝑒𝑡) is a load setpoint of interest (e.g. 0.7), 𝜌(𝑘) is the measured 

load, and ( 𝛼) is an adjustable gain parameter. The same may be said 

about (𝐿𝑚𝑎𝑥). The algorithm follows as the Algorithm 3. 

Algorithm 3: Adaptive Hybrid Burst Assembly (Basic) 

Input: Incoming Packets, Initial T_max, L_max, target load 

ρ_target, gain α 

Output: Data Bursts 

1: Initialize assembly queue Q. Set current thresholds. 

2: For each incoming packet p: 

3:     Enqueue p into Q. 

4:     current_length = total size of Q. 

5:     If (current_length >= L_max) OR (Timer >= T_max): 

6:         Form and transmit burst B. 

7:         Clear Q, reset Timer. 

8: Periodically (every K bursts or time interval ΔT): 

9:    Measure average output link utilization ρ over last period. 

10:    // Adapt Time Threshold 

11:    T_max = T_max + α  (ρ_target - ρ) 

12:    T_max = max(T_min, min(T_max, T_absolute_max)) // 

Apply bounds 

13:    // Optionally adapt L_max similarly. 

2. Fuzzy Logic-Based Controller: 

 
Fig.4. Fuzzy Logic Controller Diagram [11] 

 

http://www.doi.org/10.62341/ytta2186
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Fig 4 illustrates Fuzzy Global Controllers (FLCs) that offer a strong 

approach to address the imprecision in state measurements of the 

networks (e.g., high load, moderate loss) [10]. As demonstrated in 

the system diagram in Fig. 4, an FLC receives sharp inputs such as 

current traffic load ( 𝜌) and recent burst loss ratio (BLR) (which is 

received through feedback). It fuzzifies such inputs with 

membership functions (e.g., trapezoidal functions to represent 

linguistic values such as Low, medium and High). The membership 

of the High load can be say as an example: 

(6)    𝜇High (𝜌) =

{
 
 

 
 
0    𝜌 ≤ 𝑎
𝜌−𝑎

𝑏−𝑎
    𝑎 < 𝜌 ≤ 𝑏

1    𝑏 < 𝜌 ≤ 𝑐
𝑑−𝜌

𝑑−𝑐
    𝑐 < 𝜌 ≤ 𝑑

0    𝜌 > 𝑑

 

A rule base then maps fuzzy inputs to fuzzy outputs (e.g., "Change 

in (𝑇𝑚𝑎𝑥)"): 

- IF Load is High AND BLR is High THEN ΔT is Negative_Large. 

- IF Load is Low AND BLR is Low THEN ΔT is Positive_Small. 

All firing rules are assembled together, defuzzified (e.g. centroid 

method) to form the fuzzy output, which is then summed up to give 

a crisp value (adjustment value) ( Δ𝑇 ): 

[Δ𝑇 =
∑ 𝜇𝑗
𝑀
𝑗=1 ⋅ 𝑐𝑗

∑ 𝜇𝑗
𝑀
𝑗=1

\𝑡𝑎𝑔7] 

Where (M) represents the number of rules (𝜇𝑗) represents the firing 

strength of rule( 𝑗 ) and (𝑐𝑗) represents the centroid of the output 

membership function of the rule ( 𝑗 ).. This ( Δ𝑇 ) is then used to 

revise (𝑇𝑚𝑎𝑥). 
3. Machine Learning-Based Approaches: 

Recent advances employ Reinforcement Learning (RL) and Deep 

RL to learn optimal assembly policies. An agent (the assembly 

algorithm) observes the state (𝑠𝑡) (e.g., queue length, recent loss 

rate, traffic gradient) and takes an action (𝑎𝑡) (e.g., adjust 

 𝑇𝑚𝑎𝑥 𝑏𝑦 ± 𝛿). It receives a reward (𝑟𝑡) (e.g.,  𝑟𝑡  =  −(𝛽 ⋅ 𝐵𝐿𝑅 +

http://www.doi.org/10.62341/ytta2186
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 (1 − 𝛽) ⋅ 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑒𝑙𝑎𝑦)) and transitions to a new state 

(𝑠𝑡+1). The goal is to learn a policy 𝜋(𝑠) that maximizes cumulative 

reward [11]. These model-free approaches can discover 

sophisticated policies without requiring explicit traffic models. 

 VI. Comparative Analysis and Discussion 

A. Simulation Setup and Quantitative Results 

 
Fig 5. OBS Simulation Topology (14-node NSFNET)[12] 

In order to make a quantitative comparison, we ran the three 

assembly algorithms in a discrete-event OBS simulator written in 

Python, which was tested with known OBS-ns2 models [12]. Fig. 5 

shows a simulation topology that is a 14-node backbone of NSFNET 

using a mesh connected core. Each of the links supports W=16 

wavelengths with 40 Gbps. Traffic sources produce packets 

sequentially with Pareto-distributed inter-arrival times (shape 

α=1.5, scale β=1e-4) and uniformly distributed sizes (512 to 1536 

bytes), which is an aggregated self-similar Internet traffic. 

The plot of Burst Loss Probability (BLP) vs. normalized offered 

load is shown in Fig. 6. Simulations that we have conducted provide 

the following tangible data: 

- At a load of 0.7 Erlangs, the Time-Based scheme (T_max = 2 ms) 

achieves a BLP of 1.24 × 10−2 ± 2.1 × 10−3. 
- Under identical load, the Length-Based scheme (L_max = 64 KB) 

reduces BLP to 5.87 × 10−3 ± 1.4 × 10−3. 

- The Hybrid Adaptive scheme (with Fuzzy Logic Controller) 

achieves the lowest loss: 3.11 × 10−3 ± 0.9 × 10−3. 
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Fig.6. Burst Loss Probability (BLP) vs. Offered Load for Three Schemes 

 

The average end-to-end delay, shown in Fig. 7, exhibits the expected 

trade-off: 

- Time-Based: Bounded delay of ~2.05 ms. 

- Length-Based: Variable delay from 1.8 ms (heavy load) to 18.4 ms 

(light load of 0.2 Erlangs). 

- Hybrid Adaptive: Maintains a balanced delay between 2.8 and 4.5 

ms across all loads. 

The Bandwidth Utilization Efficiency was the efficiency ratio of bits 

of user payloads delivered successfully to the total bits transmitted 

(payload + overhead) that were actually delivered. At 0.7 Erlangs: 

- Time-Based: 68.3% 

- Length-Based: 85.7% 

- Hybrid Adaptive: 88.2% 

These findings are empirical verification of the mathematical 

models: Time-Based is inefficient in the case of a small burst, 

Length-Based is inefficient at light load, and Hybrid Adaptive 

balances both of them effectively. 
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Fig.7. Average End-to-End Delay vs. Offered Load for Three Schemes 

 

 B. Comparison with Results from Prior Literature 

An analysis of the quantitative outcomes of both historic and 

contemporary researches yields the same patterns and performance 

limits in the form of Table 1. 

Table 1: Summary of Burst Loss Probability (BLP) Ranges from 

Prior Studies 

Study 

(Year) 

Network/T

raffic 

Model 

Time-Based 

BLP Range 

Length-

Based 

BLP 

Range 

Adaptive/

Hybrid 

BLP Range 

Notes 

Xu et 

al. 

(2003) 

[13] 

14-node, 

Poisson 

traffic 

(10−2

− 10−1) 

(5
× 10−3

− 5
× 10−2) 

(2 × 10−3

− 10−2) 

Early 

comparis

on of 

static 

methods. 

Vokka

rane & 

Jue 

(2003) 

[5] 

Single link, 

self-similar 

traffic 

(8 × 10−3

− 0.12) 

(3
× 10−3

− 0.08) 

(10−3

− 0.04) 

Focus on 

QoS via 

segment

ation. 
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Liu et 

al. 

(2007) 

[10] 

NSFNET, 

Pareto 

arrivals 
𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑~(10−2) 

𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑~(6
× 10−3) 

~(2
× 10−3) 

Fuzzy-

based 

adaptive 

scheme. 

Pravee

n et al. 

(2013) 

[14] 

Review of 

multiple 

studies 

(10−3

− 0.15) 
(10−3

− 0.1) 
(5 × 10−4

− 0.05) 

Aggregat

e 

summary 

from 

survey. 

This 

Study 

(Sim) 

14-node 

NSFNET, 

Pareto/Pare

to traffic 

(3 × 10−3

− 0.11) 

(1.2
× 10−3

− 0.07) 

(8 × 10−4

− 0.03) 

Results 

align 

with 

literature 

trends. 

Analysis: Length-Based assembly has been consistently found to 

lower BLP by 30-50% such as Time-Based under moderate to high 

loads. Intelligent control based adaptive schemes (e.g. fuzzy logic 

[10]) reduce BLP by 40-60% further than length based, which is 

testament to their effectiveness. The delay performance is also 

similar: Time-Based offers a limited delay (< 5 ms), Length-Based 

offers a wide range of delay (2 ms to >50 ms), and adaptive schemes 

also effectively offer constrained delay (typically 3-8 ms) with 

limited loss. 

 C. Summary of Recent Adaptive Assembly Schemes 

The recent studies have been aimed at improving the flexibility and 

smartness of hybrid assembly processes. Table 2 is the classification 

and comparison of prominent schemes offered in the past 10 years. 

 
Table 2: Comparison of Recent Adaptive/Hybrid Burst Assembly 

Schemes 

Year 

Reference 

(Proposed 

Scheme) 

Core Adaptive 

Method 

Key Metrics 

Optimized 

Reported 

Improvement 

vs. Static 

Schemes 

2015 
Z. Zhang et al. 

[15] 

Traffic 

Predictor + 

Threshold 

Adjustment 

BLP, Delay 

Jitter 

~45% lower 

BLP, 30% 

lower jitter 

2017 
A. Mohammed 

et al. [16] 

Reinforcement 

Learning (Q-

Learning) 

Weighted 

BLP+Delay 

Cost 

Function 

38% lower 

weighted cost 
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2018 
K. Singh & P. K. 

Yadav [17] 

Neuro-Fuzzy 

Controller 

BLP, 

Throughput 

52% lower 

BLP, 18% 

higher 

throughput 

2019 
L. Wang et al. 

[18] 

Markov 

Decision 

Process (MDP) 

Formulation 

Long-term 

Average 

Delay under 

BLP 

Constraint 

25% lower 

delay for same 

BLP target 

2020 
R. K. Jena & S. 

K. Das [19] 

Cuckoo Search 

Optimization 

BLP, 

Channel 

Utilization 

41% lower 

BLP, 12% 

higher 

utilization 

2021 

Qasim et al. 

(Reinforcement) 

[11] 

Deep Q-

Network 

(DQN) 

BLP, 

Assembly 

Delay 

55% lower 

BLP, maintains 

delay < 5ms 

2022 
T. Nguyen et al. 

[20] 

Digital Twin-

assisted 

Proactive 

Adaptation 

99th 

Percentile 

Delay, BLP 

60% lower tail 

delay, 35% 

lower BLP 

2023 
H. Chen & W. 

Liu [21] 

Federated 

Learning for 

Distributed 

Edge 

Adaptation 

Global BLP, 

Fairness 

among 

Ingress 

Nodes 

30% lower 

global BLP, 

improves 

fairness 

Trend Analysis: The trend shown in Table 2 is the fact that the 

heuristic and rule-based adaptation (e.g., fuzzy logic) gradually 

shifts to data-driven and machine learning (ML). Earlier (before 

2015) schemes were concerned with local parameter tuning. Most 

recent schemes (2017-2023) utilize Reinforcement Learning (RL), 

Deep RL to optimize policies, and the most recent ones use the ideas 

of Digital Twins and Federated Learning to optimize systems on a 

global scale and proactively. The optimized measures are also no 

longer limited to simple BLP and delay but tail latency, fairness and 

jitter. 

D. Synthesis and Discussion 

Our numerical findings of our simulations are consistent with the 

known ranges of the previous literature (Table 1) and confirm the 

high quality of the course of behavior of intelligent adaptive 

schemes (Table 2). The important thing is that although the basic 

tradeoff between delay and efficiency is determined by the assembly 
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parameters, dynamic navigation of this pareto frontier is achieved 

by adaptive processes depending on the measured state of the 

network. 

Our simulation and [10] Fuzzy Logic Controller (FLC) offer the 

solution to this adaptation, which is robust and explainable. 

Nevertheless, the new ML/RL-based schemes (e.g., [11], [16], [20]) 

have higher chances of optimality in non-stationary, complex, and 

traffic environments because they learn optimal policies instead of 

using rules to act. These advanced techniques have a challenge in 

their convergence time, a computational overhead at the edge and a 

large training data requirement, all of which are under active 

research. 

The overall finding of two decades of research is that high-

performance OBS requires constant thresholds. Adaptive assembly 

is not something added on but is what is necessary to get anything 

deployed in practice, and the current research frontier is to make 

these adaptation mechanisms more intelligent and scalable and 

proactive. 

VII. Conclusion and Future Directions 

In this paper, the review and quantitative analysis of burst assembly 

methods in OBS networks have been given. Using mathematical 

modeling, algorithm design, simulation and synthesis of the existing 

literature we have proved that: 

 1. Time-Based assembly has its inherent faults: Static methods 

restrict delay and have poor bandwidth efficiency at the expected 

variable load, due to the Equation (2) curve. Length-Based assembly 

is efficient but may induce unlimited delay, which is measured by 

Equation (4). 

 2. Hybrid Adaptive schemes are required to perform optimally: 

Dynamically controlled assembly parameters of these methods 

allow to obtain a reduction of Burst Loss Probability by 40-60 

percent as compared to their static counterparts and to limit delays 

within realistic limits (3-8 ms). This finding is continuously backed 

by our simulation findings and literature review. 

 3. The discipline is moving towards a higher level of intelligence: 

The transition of simple heuristic adaptation to the Fuzzy Logic, 

followed by a transition to a more intelligent Machine Learning and 
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Deep Reinforcement Learning (Table 2) is an indication of the shift 

towards a more autonomous and optimal traffic shaping. 

A number of critical issues require attention by future research in 

order to transform these intelligent adaptive schemes to practice: 

- Lightweight ML Models: Building high-performance neural 

network or RL models that can run on resource-constrained edge 

devices. 

- Robustness and Generalization: Having adaptive algorithms that 

are reliable when confronted with non-stationary and never before 

seen traffic patterns, this may be achieved with meta-learning or 

transfer learning methods. 

- Intelligible Benchmarking: Developing standardized simulating 

frameworks and standardized traffic traces to allow comparing 

dissimilar adaptive algorithms. 

- Cross-Layer Optimization: Using the combination of burst 

assembly algorithms and protocols (TCP/IP) of higher layers 

together with lower-layer physical impairment to optimize the 

network holistically. 

- Interconnection with the Emerging Architectures: Evaluating the 

use of adaptive burst assembly in Software-Defined Optical 

Networks (SDON), 5G/6G backhaul network slicing, and quantum-

secured optical links. 

The process of overcoming the stationary to adaptive burst assembly 

is the reflection of the overall trend toward intelligent and self-

optimizing networks. With more dynamic traffic patterns and more 

demanding applications, increasingly complex, data-driven 

assembly mechanisms will be required, which will be an even 

stronger part of the foundations of high-performance optical 

networks of the future. 
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